Abstract

A big challenge in continuous-variable quantum key distribution is to prove security against arbitrary coherent attacks including realistic assumptions such as finite-size effects. Recently, such a proof has been presented in [Phys. Rev. Lett. 109, 100502 (2012)] for a two-mode squeezed state protocol based on a novel uncertainty relation with quantum memories. But the transmission distances were fairly limited due to a direct reconciliation protocol. We prove here security against coherent attacks of a reverse-reconciliation protocol under similar assumptions but allowing distances of over 16 km for experimentally feasible parameters. We further clarify the limitations when using the uncertainty relation with quantum memories in security proofs of continuous-variable quantum key distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.