Abstract

The rise in the accessibility of photovoltaic (PV) generators to consumers increases the possibility of reverse power flow (RPF) in the electric distribution system. RPF occurs when power flows to the design of the system. Overvoltage, power losses and protection system coordination are among the problems that could occur due to the presence of RPF. This paper describes an algorithm to detect the presence of RPF using optimally-placed micro-phasor measurement units (µPMUs) in the IEEE 34-Bus System with 5 PV generators. A machine learning algorithm based on a feedforward artificial neural network (ANN) was developed. The algorithm was able to detect the presence of RPF using (1) voltage and current and (2) polar- and (3) rectangular-impedance methods for training. The algorithm was also able to detect RPF under scenarios that were not used during the training process. Sensitivity analyses were performed for cases such as PV outage, PV relocation, PV addition, PV expansion and load increase. The susceptibility of the algorithm to true value errors (TVEs) was tested by adding error vectors on the µPMU measurements for both the training and testing populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.