Abstract

Technologies for water recycling within oil refineries have been gaining interest at an extensive rate due to the large volume of wastewater generated, high dependency of water and the progressive scarcity of this valuable resource. Phenols are part of a specific class of organic pollutants that have been contributing to a low-quality effluent in oil refineries due to their hazardous nature and strict environmental legislation associated. The reuse of stripped sour water within refineries is often blocked due to its rich phenolic content.This study evaluates the retention of phenols in refinery wastewater through reverse osmosis (RO) at its major source of emission, for water reclamation. The RO membrane selected exhibited rejections of up to 98% of phenols and 99% of both chemical oxygen demand (COD) and total organic carbon (TOC). Permeate quality remained intact despite flux decline caused by phenolic and hydrocarbon adsorption when the oil content, in the feed, reached 771 ppm. The effluent's low conductivity due to lack of salts led to minor osmotic pressure differences (less than 2.5 bar at a volume concentration factor of 3), therefore, showing appealing performances of reverse osmosis filtration. Characterization of all permeates obtained from cross-flow filtration experiments showed COD levels in line with water reuse quality standards for make-up water in cooling processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call