Abstract

Globally, reverse osmosis desalination systems are widely utilized as they have the cheapest freshwater production cost. On the contrary, reverse osmosis systems have high specific energy consumption and membrane fouling that requires continuous chemical cleaning. Additionally, the plants' performance and their applicability can be stated via different terms: specific energy consumption, freshwater cost, thermal efficiencies, configurations, water recovery factors, and water quality. Therefore, many investigations have been conducted to enrich these indicators. Accordingly, the current review aimed to comprehensively merge most of these studies to give a complete picture of the recent developments of reverse osmosis plants considering all the aforementioned parameters. On the one hand, the current survey focused on solar-based reverse osmosis plants, which were established to decrease the specific energy consumption using photovoltaic or solar thermal power plants; especially, the organic Rankine cycle. Besides, various preheating techniques and relevant works were presented. The preheating boosts the plants' thermo-economic performance, and yield as the power consumption and productivity proportionally vary with the feedwater temperature. The preheating can be conducted by recovered heat from other systems, such as photovoltaic cooling unit, humidification-dehumidification process, organic Rankine cycle, and hybrid systems. Finally, the brine disposal methods were introduced, discussed, and compared to help in identifying the most appropriate economic technique, especially for the inland desalination plants. It is proposed that this review can help in the research continuity in the desalination field, especially reverse osmosis plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.