Abstract

Mixing of two solutions into one is a spontaneous process with a net increase in entropy. However, the reverse of the mixing process is usually not possible unless certain conditions are met. A continuous solution stream containing a mixture of two compounds can be separated into two channels, each containing a pure compound, thus reversing the mixing process using a two-dimensional microfluidic electro-fluid-dynamic (EFD) device. When the electric field is strategically applied in the interconnecting channels of an EFD device, the pressure required to direct an analyte into a certain channel can be calculated by using the solutions of electric field and fluid dynamics in the mass balance equation. If the pressure and electric potential at various inlets and outlets satisfy these predetermined conditions, the reverse of a mixing process is observed. Conventional microfluidic devices have been used to introduce samples from interconnecting channels or efficiently mix different solutions into a single channel. The EFD devices expand the spatial separation of analytes from one dimension to two using both the differential migration behavior of analytes and the velocity field distribution in different channel geometries. The devices designed according to these basic physicochemical principles can be used for complete processing of minute samples and to obtain pure chemical species from complex mixtures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call