Abstract

Given a set D of objects, a reverse nearest neighbor (RNN) query returns the o in D such that o is closer to a query object q than to any other object in D, according to a certain similarity metric. The existing RNN solutions are not sufficient because they either 1) rely on precomputed information that is expensive to maintain in the presence of updates or 2) are applicable only when the data consists of Euclidean objects and similarity is measured using the L2 norm. In this paper, we present the first algorithms for efficient RNN search in generic metric spaces. Our techniques require no detailed representations of objects, and can be applied as long as their mutual distances can be computed and the distance metric satisfies the triangle inequality. We confirm the effectiveness of the proposed methods with extensive experiments

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.