Abstract

Reverse Monte Carlo (RMC) modeling of liquid water, based on one neutron and one X-ray diffraction data set, applying also the most popular interatomic potential for water, extended simple point charge (SPC/E), has been performed. The strictly rigid geometry of SPC/E water molecules had to be loosened somewhat, in order to be able to produce a good fit to both sets of experimental data. In the final particle configurations, regularly shaped water molecules and straight hydrogen bonding angles were found to be consistent with diffraction results. It has been demonstrated that the explicit use of interatomic potentials in RMC has a role to play in future structural modeling of water and aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.