Abstract

MnOx–TiO2 catalysts (0, 1, 5, and 10 wt % Mn nominal content) for NH3-SCR (selective catalytic reduction) of NOx have been synthesized by the reverse micelle-assisted sol–gel procedure, with the aim of improving the dispersion of the active phase, usually poor when obtained by other synthesis methods (e.g., impregnation) and thereby lowering its amount. For comparison, a sample at nominal 10 wt % Mn was obtained by impregnation of the (undoped) TiO2 sample. The catalysts were characterized by using an integrated multitechnique approach, encompassing X-ray diffraction followed by Rietveld refinement, micro-Raman spectroscopy, N2 isotherm measurement at −196 °C, energy-dispersive X-ray analysis, diffuse reflectance UV–vis spectroscopy, temperature-programmed reduction technique, and X-ray photoelectron spectroscopy. The obtained results prove that the reverse micelle sol–gel approach allowed for enhancing the catalytic activity, in that the catalysts were active in a broad temperature range at a substantially low Mn loading, as compared to the impregnated catalyst. Particularly, the 5 wt % Mn catalyst showed the best NH3-SCR activity in terms of both NOx conversion (ca. 90%) and the amount of produced N2O (ca. 50 ppm) in the 200–250 °C temperature range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call