Abstract
AbstractWe show, relative to the base theory RCA0: A nontrivial tree satisfies Ramsey's Theorem only if it is biembeddable with the complete binary tree. There is a class of partial orderings for which Ramsey's Theorem for pairs is equivalent to ACA0. Ramsey's Theorem for singletons for the complete binary tree is stronger than . hence stronger than Ramsey's Theorem for singletons for ω. These results lead to extensions of results, or answers to questions, of Chubb, Hirst, and McNicholl [3].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.