Abstract

The reverse martensitic transformation in cold-rolled metastable austenitic stainless steel has been investigated via heat treatments performed for various temperatures and times. The microstructural evolution was evaluated by differential scanning calorimetry, X-ray diffraction and microscopy. Upon heat treatment, both diffusionless and diffusion-controlled mechanisms determine the final microstructure. The diffusion reversion from α′-martensite to austenite was found to be activated at about 450°C and the shear reversion is activated at higher temperatures with Af′ ∼600°C. The resulting microstructure for isothermal heat treatment at 650°C was austenitic, which inherits the α′-martensite lath morphology and is highly faulted. For isothermal heat treatments at temperatures above 700°C the faulted austenite was able to recrystallize and new austenite grains with a low defect density were formed. In addition, carbo-nitride precipitation was observed for samples heat treated at these temperatures, which leads to an increasing Ms-temperature and new α′-martensite formation upon cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.