Abstract

Thermally activated delayed fluorescence (TADF) has emerged as one of the most promising strategies in the quest for organic light emitting diodes with optimal performance. This computational study dissects the mechanistic intricacies of the central photophysical step, reverse intersystem crossing (rISC) in N and B doped triangulenes as potential multi-resonance TADF compounds. Optimal molecular patterns conducive to efficient rISC, encompassing dopant atom size, number, and distribution, are identified. Additionally, we assess various electronic structure methods for characterizing TADF-relevant molecular systems. The findings identify the distinct role of the direct and mediated mechanisms in rISC, and provide insights into the design of advanced TADF chromophores for next-generation OLED technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.