Abstract

We propose a reverse functional design of modified Fresnel lens (MFL) with discontinuous refractive surfaces to achieve cost-effective high optical performance with thin lenses. The reverse-geometry design process was optimized to control the spatial illuminance distribution (SID) of light-emitting diodes (LEDs). Analysis results based on non-sequential ray-tracing simulations for flat SIDs indicated that the illuminance uniformity of LEDs with optimum MFL with different groove angles increased about 22 times, from 0.348 to 0.016, compared with the normalized standard deviation (NSD) of the general Fresnel lenses (GFL) with groove angles of 0°. In addition, the proposed method enhanced the color uniformity by reducing the circular yellow pattern. Tolerance analysis was carried out to determine tolerance limits for applying the optimum MFL in the assembly process. Finally, the feasibility of the reverse design process was verified by optical measurements of the optimum MFL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.