Abstract

Metabolic homeostasis of amino acids is essential for human health. Here, we aimed to investigate a potential role for the clock component reverse erythroblastosis virus α (Rev-erbα) in circadian regulation of amino acid metabolism. RNA-seq with Rev-erbα-/- mice showed expression changes in genes involved in amino acid metabolism, particularly, the urea cycle and methionine metabolism. Rev-erbα ablation increased hepatic mRNA, protein, and enzymatic activity of betaine homocysteine methyltransferase (Bhmt), cystathionine β-synthase (Cbs), and cystathionine γ-lyase (Cth) and decreased the levels of plasma and liver homocysteine in mice. Cell-based assays confirmed negative regulation of these three genes by Rev-erbα. Combined luciferase reporter, mobility-shift, and chromatin immunoprecipitation assays identified Rev-erbα as a transcriptional repressor of Bhmt, Cbs, and Cth. Rev-erbα ablation or antagonism alleviated chemical-induced hyperhomocysteinemia in mice. This was accompanied by elevated expressions of Bhmt, Cbs, and Cth. Moreover, Rev-erbα ablation or antagonism promoted urea production and ammonia clearance. Of urea cycle-related genes, arginase 1 (Arg1), ornithine transcarbamylase (Otc), and carbamoyl-phosphate synthase 1 (Cps1) expressions were up-regulated in Rev-erbα-/- mice. Negative regulation of these urea cycle genes by Rev-erbα was validated using cell-based experiments. Mechanistic studies revealed that Rev-erbα inhibited CCAAT-enhancer-binding protein α transactivation to repress the transcription of Arg1, Cps1, and Otc. Conclusion: Rev-erbα antagonism alleviates hyperhomocysteinemia and promotes ammonia clearance. Targeting Rev-erbα represents an approach for the management of homocysteine- and ammonia-related diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call