Abstract
The purpose of this paper is to describe a new approach to process the data points measured from turbine blade airfoils in order to make a valid shape via reverse engineering method. Currently, preliminary B-rep models can be created by fitting surfaces to point clouds using a 3D laser scanner. In case of a turbine blade, due to high shape complexity, the resulting model is often unsuitable in practice. A small change in blade geometry can lead to a large change in turbine performance. Therefore, control of the blade shape is critical to the design process. Authors believe that the only way to capture the valid shape of a blade airfoil out of the many manufacturing deviations is to incorporate design key-points during reverse engineering. Implementation of the new method using segmentation and constrained fitting algorithm (SCFA) on a heavy-duty industrial gas turbine blade has been reported and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.