Abstract

Printed electronics (PE) circuits have several advantages over silicon counterparts for the applications where mechanical flexibility, extremely low-cost, large area, and custom fabrication are required. The custom (personalized) fabrication is a key feature of this technology, enabling customization per application, even in small quantities due to low-cost printing compared with lithography. However, the personalized and on-demand fabrication, the non-standard circuit design, and the limited number of printing layers with larger geometries compared with traditional silicon chip manufacturing open doors for new and unique reverse engineering (RE) schemes for this technology. In this paper, we present a robust RE methodology based on supervised machine learning, starting from image acquisition all the way to netlist extraction. The results show that the proposed RE methodology can reverse engineer the PE circuits with very limited manual effort and is robust against non-standard circuit design, customized layouts, and high variations resulting from the inherent properties of PE manufacturing processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.