Abstract

A major challenge when attempting to model biochemical reaction networks within the cell is that the dimensionality can become huge, where a large number of molecular species can be involved even in relatively small networks. This investigation attempts to infer models of these networks using a co-evolutionary algorithm that reverse engineers differential equation models of the target system from time-series data. The algorithm not only estimates the system parameters, but also the symbolic structure of the network. To reduce the problem of dimensionality, the algorithm uses a partitioning method while integrating candidate models in order to decouple system equations. In addition, the conventional evolutionary algorithm has been modified and extended to include a technique called ‘eng-genes’, where candidate models are built up from fundamental mathematical terms derived from knowledge about the target system a priori. This technique essentially focuses the search on more biologically plausible models. The approach is demonstrated on several example reaction networks. The results show that the eng-genes method of limiting the term pool using a priori knowledge improves the convergence of the reverse engineering process compared with the conventional method, resulting in more accurate and transparent models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.