Abstract
Reverse engineering gene regulatory networks (GRNs), also known as GRN inference, refers to the process of reconstructing GRNs from gene expression data. A GRN is modeled as a directed graph in which nodes represent genes and edges show regulatory relationships between the genes. By predicting the edges to infer a GRN, biologists can gain a better understanding of regulatory circuits and functional elements in cells. Many bioinformatics tools have been developed to computationally reverse engineer GRNs. However, none of these tools is able to perform perfect GRN inference. In this paper, we propose a graph mining approach capable of discovering frequent patterns from the GRNs inferred by existing methods. These frequent or common patterns are more likely to occur in true regulatory networks. Experimental results on different datasets demonstrate the good quality of the discovered patterns, and the superiority of our approach over the existing GRN inference methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.