Abstract

Genetic algorithm (GA) optimization coupled with the semiempirical intermediate neglect of differential overlap (INDO)/CIS method is presented to inversely design the red thermally activation delayed fluorescent (TADF) molecules. According to the predefined donor-acceptor (DA) library to build an ADn-type TADF candidate, we utilized the chemical notation language SMILES code to generate a TADF molecule and apply the RDKit program to produce the initial 3D molecular structure. A combined fitness function is proposed to evaluate the performance of the functional-lead TADF molecule. The fitness function includes three key parameters, i.e., the emission wavelength, the energy gap (ΔEST) between the lowest singlet (S1)- and triplet (T1)-excited states, and the oscillator strengths for electron transition from S0 and S1. A cheap QM method, i.e., INDO/CIS, on the basis of an xTB-optimized molecular geometry is applied to quickly calculate the fitness function. Finally, the GA approach is utilized to globally search for the wavelength-specific TADF molecules under our predefined DA library, and the optimum 630 nm red and 660 nm deep red TADF molecules are inversely designed according to the evolution of molecular fitness functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call