Abstract

Reverse correlation techniques provide a quantitative means of computing neuronal input/output relationships. Until now these methods have been limited to electrically recorded responses since unprocessed optical signals generally lack necessary temporal characteristics. We sought to overcome this barrier since combining reverse correlation with calcium imaging would afford a powerful alternative to current methods of measuring response properties of neurons non-invasively in vivo. We labeled zebrafish optic tecta with a calcium indicator and measured responses to a whole-field random flicker light stimulus. Although calcium signals exhibited slow decay kinetics, we could use computational modeling to show that the positive differential of these traces extracts high frequency information. Experimentally, we found that calcium signals processed in this way were synchronous with simultaneously measured synaptic responses and could be used with reverse correlation to determine temporal filters of neurons in the zebrafish optic tectum. These findings demonstrate that calcium responses to physiological stimulation can be processed to obtain rapid signal information and consequently to determine linear filter properties in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.