Abstract

ObjectivesTo evaluate the blood flow velocity and wall shear stress in total arch replacement with a “shaggy” aorta, using computational fluid dynamics, and determine the optimal cannulation method. MethodsA patient-specific aortic arch aneurysm model was constructed by using computed tomography scans. Three cannulas were assessed, as follows: dispersive with a steep angle, dispersive with a gentle angle, and the endo-hole type. The cannula tips were oriented toward the aortic arch (standard direction) and aortic root (reversed direction), with an ideal angle (base orientation: 0°), tip orientations rotated 20° clockwise and counterclockwise from the base orientation. The variables of interest included the blood flow velocity, streamlines, wall shear stress, and flow distribution. ResultsThe standard direction resulted in variable accelerated flow and wall shear stress locations based on cannula tip orientation, leading to unstable cerebral branch flow. Minor deviation in the cannula tip angle and cannula type led to significant alterations in flow distribution. Conversely, in the reverse direction for all cannulas, no accelerated blood flow was observed in the proximal aortic arch or cerebral vessel ostia even with angular adjustments, helping maintain a stable cerebral branch flow. Minimal variation in blood flow distribution was observed across all cannula types and angles. ConclusionsOur simulations indicate that, irrespective of the cannula type or orientation, directing the cannula tip toward the aortic root (reversed direction) prevents accelerated blood flow in critical areas, suggesting its potential as an optimal approach for aortic arch surgery in “shaggy” aorta cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.