Abstract
The increasing penetration of renewable and distributed energy resources in distribution networks calls for real-time and distributed voltage control. In this article, we investigate local Volt/VAR control with a general class of control functions, and show that the power system dynamics with nonincremental local voltage control can be seen as a distributed algorithm for solving a well-defined optimization problem (reverse engineering). The reverse engineering further reveals a fundamental limitation of the nonincremental voltage control: the convergence condition is restrictive and prevents better voltage regulation at equilibrium. This motivates us to design two incremental local voltage control schemes based on the subgradient and pseudo-gradient algorithms, respectively, for solving the same optimization problem (forward engineering). The new control schemes decouple the dynamical property from the equilibrium property, and have much less restrictive convergence conditions. This article presents another step toward developing a new foundation-network dynamics as optimization algorithms-for distributed real-time control and optimization of future power networks.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.