Abstract

Multidrug resistance (MDR) represents a clinical obstacle to cancer chemotherapy since it causes cancer recurrence and metastasis. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient derived from the plant Boswellia serrata, has been found to inhibit the growth of a wide variety of tumor cells, including glioma, colorectal cancer, leukemia, human melanoma, hepatocellular carcinoma, and prostate cancer cells. However, the actions of AKBA in multidrug-resistant cancer cells have not been fully elucidated. The current study examined the reversal of MDR by AKBA in a human ileocecal adenocarcinoma cell line with vincristine-induced resistance, HCT-8/VCR. A 3-[4, 5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay indicated that cytotoxicity increased drastically and the IC50 of VCR in HCT-8/VCR cells decreased in the presence of AKBA. AKBA had a maximum "fold reversal" of MDR (FR) of 9.19-fold. In addition, HCT-8/VCR cells treated with AKBA and VCR exhibited a higher percentage of apoptotic tumor cells according to flow cytometry. The reversal of MDR by AKBA was evident in an intracellular increase in Rhodamine (Rh123), indicating that the activity of P-glycoprotein (P-gp) was blocked. Furthermore, AKBA inhibited the expression of P-gp and decreased levels of expression of multidrug resistance gene 1 in HCT-8/VCR cells. The current results indicated that AKBA might be a potential agent to reverse MDR in human ileocecal adenocarcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.