Abstract
Some aspects of reproductive function in the GnRH-deficient hypogonadal (hpg) mutant mouse can be restored by transplanting normal fetal brain tissue containing GnRH cells into the central nervous system of adult hpg mice. However, hpg males showing physiological response to the graft fail to display sexual behavior and are infertile. We hypothesized that the reproductive deficit of these males is due to insufficient perinatal exposure to testicular androgens as a consequence of the GnRH deficiency. To test this hypothesis we androgenized hpg males by giving them neonatal injections of testosterone propionate (TP). Controls consisted of hpg males not androgenized neonatally and of normal males. All three groups received a TP implant in adulthood, and their copulatory behavior and reproductive capability were recorded. In addition, other hpg males, not androgenized neonatally, received fetal brain transplants containing GnRH neurons and were also tested for copulatory behavior and reproductive capability before and after receiving a TP implant. Three of 8 neonatally androgenized hpg males expressed the full repertoire of male sexual behavior, including intromission and ejaculation, and sired several litters. Three of 7 control hpg males that were not androgenized neonatally but received TP implants in adulthood also displayed mounting and intromission, but there was no evidence of ejaculation, and these males failed to impregnate normal females. Of the 8 hpg males that responded to a fetal transplant with testicular growth, only 1 displayed mounting behavior. However, when given a TP implant, 4 of 8 hpg males with grafts displayed mounting and intromissions.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.