Abstract

The transport properties of gapless edge modes at boundaries between topologically distinct domains are of fundamental and technological importance. We experimentally studied long-distance quantized Hall drifts in a harmonically confined topological pump of ultracold fermionic atoms. We found that quantized drifts halt and reverse their direction when the atoms reach a critical slope of the confining potential, revealing the presence of a topological boundary. The drift reversal corresponded to a band transfer between a band with Chern number C = +1 and another with C = -1 through a gapless edge mode, in agreement with the bulk-edge correspondence for noninteracting particles. Nonzero repulsive Hubbard interactions led to the emergence of an additional edge in the system through a mechanism in which pairs of fermions are split.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call