Abstract

Multidrug resistance (MDR) is a major obstacle to successful clinical cancer chemotherapy. Currently, there is still unsatisfactory demand for innovative strategies as well as effective and safe reversing agent to overcome MDR. In this study, we developed a novel nanoformulation, in which doxorubicin hydrochloride (DOX) and quinine hydrochloride (QN) were simultaneously loaded into liposomes by a pH-gradient method for overcoming MDR and enhancing cytotoxicity in a doxorubicin-resistant human breast cancer cell line (MCF-7/ADR). The various factors were investigated to optimize the formulation and manufacturing conditions of DOX and QN co-loaded liposomes (DQLs). The DQL showed uniform size distribution and high encapsulation efficiency (over 90%) for both the drugs. Furthermore, DQLs significantly displayed high intracellular accumulation and potential of MDR reversal capability in MCF-7/ADR cells through the cooperation of DOX with QN, in which QN played the role as a MDR reversing agent. The IC50 of DQL0.5:1 with the DOX/QN/SPC weight ratio of 0.5:1:50 was 1.80 ± 0.03 μg/mL, which was 14.23 times lower than that of free DOX in MCF-7/ADR cells. And the apoptotic percentage induced by DQL0.5:1 was also increased to 62.2%. These findings suggest that DQLs have great potential for effective treatment of MDR cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.