Abstract

Quinoline resistance in malaria is frequently compared with P-glycoprotein-mediated multidrug resistance (mdr) in mammalian cells. We have previously reported that nonylphenolethoxylates, such as NP30, are potential Plasmodium falciparum P-glycoprotein substrates and drug efflux inhibitors. We used in vitro assays to compare the ability of verapamil and NP30 to sensitize two parasite isolates to four quinolines: chloroquine (CQ), mefloquine (MF), quinine (QN), and quinidine (QD). NP30 was able to sensitize (reversal, >80%) P. falciparum to MF, QN, QD, and, to a lesser extent, CQ. The presence of 2 micro M verapamil had no effect on mefloquine resistance; however, the presence of verapamil modulated the activities of QN and QD in a manner parallel to that observed for CQ. Genetic analysis of putative quinoline resistance genes did not suggest an association between known point mutations in pfcrt and pfmdr1 and NP30 sensitization activity. We conclude that the sensitization action of NP30 is distinct both phenotypically and genotypically from that of verapamil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.