Abstract
Massless Dirac fermions in monolayer graphene exhibit total transmission when normally incident on a scalar potential barrier, a consequence of the Klein paradox originally predicted by O Klein for relativistic electrons obeying the 3 + 1 dimensional Dirac equation. For bilayer graphene, charge carriers are massive Dirac fermions and, due to different chiralities, electron and hole states are not coupled to each other. Therefore, the wavefunction of an incident particle decays inside a barrier as for the non-relativistic Schrödinger equation. This leads to exponentially small transmission upon normal incidence. We show that, in the presence of magnetic barriers, such massive Dirac fermions can have transmission even at normal incidence. The general consequences of this behavior for multilayer graphene consisting of massless and massive modes are mentioned. We also briefly discuss the effect of a bias voltage on such magnetotransport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.