Abstract

Identifying the mechanisms underlying the adverse effects of developmental neurotoxicants enables the design of therapies that can potentially reverse neurobehavioral deficits in adulthood. We administered chlorpyrifos (CPF), a model organophosphate pesticide to pregnant mice and identified visuospatial deficits in adult offspring using performance in the Morris maze. We then evaluated two strategies to reverse the effects, nicotine administration and transplantation of neural stem cells. Daily administration of nicotine prior to behavioral testing did not alter maze performance by itself, but completely reversed the deficits evoked by prenatal CPF exposure. Similarly, control animals grafted with neural stem cells in adolescence did not show any alterations in behavioral performance as adults, but the grafts completely reversed the effects of prenatal CPF treatment. This study thus provides a model for the development and application of both pharmacologic and cell-based therapies to offset the effects of neurobehavioral teratogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.