Abstract
Neurobehavioral teratogenicity can be reversed with transplantation of neural stem cells. However, the usefulness of this therapy would be greatly enhanced by employing adult stem cells. In pursuit of this this goal, we developed a model that uses subventricular zone (SVZ) cells. HS/Ibg mice were exposed prenatally to chlorpyrifos on gestational days 9-18 (3 mg/kg/day, SC) in order to induce deficits in their performance in the Morris water maze test. Both the control and the exposed offspring were transplanted with SVZ cells (or vehicle) on postnatal day 35; this actually represents an allogenic transplantation, because the HS/Ibg strain is a heterogeneous stock. The transplanted cells were later observed in the host brain by DiI tracing, and their initial differentiation to cholinergic neurons and astrocytes was ascertained. On postnatal day 80, animals that had been exposed prenatally to chlorpyrifos displayed impaired Morris water maze performance, requiring more time to reach the platform. Transplantation of adult SVZ-derived neural stem cells (NSC) reversed the deficits. Applying autologous transplantation provides an important demonstration that the methodological obstacles of immunological rejection and the ethical concerns related to using embryonic stem cells may be successfully bypassed in developing stem cell therapies for neurodevelopmental disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.