Abstract

Multidrug resistance (MDR) is a major barrier for chemotherapy of many cancers. Mdr-1 plays a key role in the development of MDR as extensively verified. However, the role of Raf-1 overexpression in the development of multidrug resistance in human squamous carcinoma (KBv200) cells remains largely unknown. The aim of this study was to investigate the correlation of Raf-1 overexpression with the development of multidrug resistance in KBv200 cells. Furthermore, we explored the reversal effect of Raf-1 siRNA transfection and Raf-1/Mdr-1 siRNAs co-transfection on the multidrug resistance of KBv200 cells and potential mechanism of reversing the multidrug resistance. MTT and flow cytometry assay were used to investigate the reversal effect of single transfection with either Raf-1 or Mdr-1 siRNA and double transfection with Raf-1/Mdr-1 siRNAs to vincristine of KBv200 cells. RT-PCR, immunofluorescence and Western Blot were used to detect mRNA and protein expression of Raf-1 and multidrug-resistant gene Mdr-1. The results of gene detection showed that the expression levels of both Raf-1 and Mdr-1 were greatly decreased upon Raf-1 silencing alone or in combination with Mdr-1 silencing. Raf-1 or Mdr-1 siRNA single transfection could reverse the multidrug resistance of KBv200 cells effectively. Compared with single transfection, Raf-1/Mdr-1 siRNAs co-transfection can significantly reduce IC(50) values and increase the apoptotic rates of KBv200 cells. The above results suggested that Raf-1 gene may be a novel target for reversing the multidrug resistance of human squamous carcinoma cells. Raf-1/Mdr-1 siRNAs co-transfection might be a promising approach to abrogate the multidrug resistance of cancer cells. The potential mechanism may be via inhibiting the multidrug-resistant gene Mdr-1 expression efficiently.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call