Abstract

In this paper, a model for the bistatic reverberation associated with seafloor scattering of sound from a moving, narrowband source in an ocean waveguide is developed. Studies of the Doppler effect for moving sources in waveguides have typically focused on the forward propagating field where the Doppler shift leads to a splitting or broadening of the received spectrum. In contrast, the contributions to the scattered field come from all directions and as a consequence the spectrum of the received energy is spread across the entire range of Doppler-shifted frequencies possible for the speed of the source. The model developed here uses rays for the incident field, ray-mode analogies for the scattering, and normal modes to propagate the scattered field to the receiver. Results from this model are compared with data collected using a towed source during the Target and Reverberation Experiment 2013. The possible applications of this Doppler reverberation for seafloor characterization are also considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call