Abstract

We derive closed-form solutions for reverberant elastography in anisotropic elastic media by adapting the framework used in electromagnetic theory to treat transverse isotropic materials. Different sample-setup geometries are analyzed, highlighting their relevance for both optical coherence elastography (OCE) and ultrasound elastography (USE). Numerical simulations using finite elements are used to validate the proposed solutions in practical cases. OCE experiments are conducted in ex vivo chicken muscle samples for the characterization of in-plane and out-of-plane shear modulus assuming a transverse isotropic elastic model. Additionally, we obtained a generalized geometry-independent solution for the isotropic media case, thus unifying previous results for reverberant elastography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call