Abstract

Selecting an appropriate electron donor to enhance nitrogen removal for treating low C/N wastewater in ecological floating beds (EFBs) is controversy. In this study, a systematic and comprehensive evaluation of sodium acetate (EFB-C), sodium thiosulfate (EFB-S) and iron scraps (EFB-Fe) was performed in a 2-year experiment on long-term viability including nitrogen removal and greenhouse gas emissions associated with key molecular biological mechanisms. The results showed that EFB-C (43–85 %) and EFB-S (40–88 %) exhibited superior total nitrogen (TN) removal. Temperature and hydraulic retention time (HRT) have significant impacts on TN removal of EFB-Fe, however, it could reach 86 % under high temperature (30–35 °C) and a long HRT (3 days), and it has lowest N2O (0–6.2 mg m−2 d−1) and CH4 (0–5.3 mg m−2 d−1) fluxes. Microbial network analysis revealed that the microbes changed from competing to cooperating after adding electron donors. A higher abundance of anammox genera was enriched in EFB-Fe. The Mantel's test and structural equation model provided proof of the differences, which showed that acetate and thiosulfate were similar, whereas Fe0 was different in the nitrogen removal mechanism. Molecular biology analyses further verified that heterotrophic, autotrophic, and mixotrophic coupled with anammox were the main TN removal pathways for EFB-C, EFB-S, and EFB-Fe, respectively. These findings provide a better understanding of the biological mechanisms for selecting appropriate electron donors for treating low C/N wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call