Abstract
The fundamental nature of Ti(III) complexes generated in tetrahydrofuran by reduction of Cp(2)TiCl(2) has been clarified by means of cyclic voltammetry and kinetic measurements. While the electrochemical reduction of Cp(2)TiCl(2) leads to the formation of Cp(2)TiCl(2)(-), the use of metals such as Zn, Al, or Mn as reductants affords Cp(2)TiCl and (Cp(2)TiCl)(2) in a mixture having a dimerization equilibrium constant of 3 x 10(3) M(-)(1), independent of the metal used. Thus, we find it unlikely that the trinuclear complexes or ionic clusters known from the solid phase should be present in solution as previously suggested. The standard potentials determined for the redox couples Cp(2)TiCl(2)/Cp(2)TiCl(2)(-), (Cp(2)TiCl)(2)(+)/(Cp(2)TiCl)(2), Cp(2)TiCl(+)/Cp(2)TiCl, and Cp(2)Ti(2+)/Cp(2)Ti(+) increase in the order listed. However, the reactivity of the different Ti(III) complexes is assessed as (Cp(2)TiCl)(2) greater, similar Cp(2)TiCl approximately Cp(2)Ti(+) >> Cp(2)TiCl(2)(-) in their reactions with benzyl chloride and benzaldehyde. None of the reactions proceed by an outer-sphere electron transfer pathway, and clearly the inner-sphere character is much higher in the case of Cp(2)Ti(+) than for (Cp(2)TiCl)(2), Cp(2)TiCl, and in particular Cp(2)TiCl(2)(-). As to the electron acceptor, the inner-sphere character increases, going from benzyl chloride to benzaldehyde, and it is suggested that the chlorine atom in benzyl chloride and the oxygen atom in benzaldehyde may function as bridges between the reactants in the transition state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.