Abstract

The 7th member of Middle Jurassic Dameigou Formation (J2d7) in northern Qaidam Basin, China was proposed to have good hydrocarbon generating potential in previous studies. Here we apply an integrated petrographic and geochemical analysis to investigate the depositional environment, real thermal maturity and shale gas potential of organic-matter (OM)-rich assemblage. The relatively high content of C29 regular sterane (56.8%–62.8%) and vitrinite predominance in maceral composition suggesting plenty of higher-plant input, combined with the high pristane/phytane ratio (Pr/Ph)(2.8–8.2) and low gammacerane index (0.2–0.4) reveals oxic water column with in-situ depositional condition of carbonaceous-mudstone when the lower J2d7 was deposited. The maceral composition of oil shale at the upper part of J2d7 is mainly amorphous OM with small proportion of reworked vitrinite and inertinite, consistent with a mainly algea and small amount of exogenous OM input. When associated with low Pr/Ph (0.8) and high gammacerane index (4.3), the oil shale was deposited in an anoxic saline water column with mainly zooplankton OM source. The geochemical and petrographic result implies a transitional environment ranging from suboxic semi-saline to oxic fresh water environment with varying proportion of higher-plant and algae input by in-situ deposition and distant transportation for the mudstone at the middle part of J2d7. By use of random reflectance (Ro) distribution, two sedimentary environment microcycles which are confirmed by maceral composition, from the depth of 1983 m to 1962 m and 1954 m to 1931.9 m, are differentiated within the homogenous mudstone section. The variation of OM input condition and alternation of depositional environment led to accumulation and deposition of various kinds of abundant OM when J2d7 was deposited. Although the OM has actually low maturity at oil window with vitrinite reflectance around 0.6% according to the petrographic results, the liptinite inherited from higher-plants especially suberinite is the main maceral to generate gaseous hydrocarbons at the low maturity, which implies that the Dameigou formation (J2d7) of Qaidam Basin is of gas potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.