Abstract

Antibacterial resistance (AR) is causing more and more bacterial infections that cannot be cured by using the antibacterial drugs that are currently available. It is predicted that 10 million people will die every year by 2050 from infections caused by antibacterial resistant strains, surpassing the predicted numbers of deaths caused by cancer. AR is therefore a global challenge and novel antibacterial strategies are in high demand. To this end, the work on exploring the pore properties of a bacterial sugar transporter, WzaK30, has led to the discovery of the first inhibitor against bacterial capsular polysaccharides export.Recently, single-molecule recapitulation of capsular polysaccharide (CPS) export and pore formation properties of Wza barrel peptides have also revealed the possibility of a next-generation of Wza strategies. These strategies are based upon the first examination and understanding of the pore properties of wild-type (WT) and mutant WzaK30 in single-molecule electrical channel recording. The initially reported experimental procedures have been further developed to enable efficient studies of other Wza homologs that are more common in bacterial pathogens causing significant bacterial infections. Therefore, this chapter presents the most recent protocols and logistics behind the research on Wza channel activity, antibacterials, and strategies. The disciplines covered here include computation, molecular biology, biochemistry, electrophysiology, microbiology, and biophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.