Abstract

Changes in climate and land-use are altering soil respiration patterns and thus affecting C sequestration rates globally. This study aims to understand the effect of revegetation induced land-use change on the response of soil respiration to precipitation pulses during an extreme-drying-and-rewetting period. Soil respiration (SR) in cropland, grassland, shrubland, and orchard were intensively monitored along with environmental variables during an extreme drought period with precipitation pulse on China’s Loess Plateau. SR was strongly correlated to soil water content for all land-uses. However, the relationship was highly dependent on land-use types: SR was only strongly suppressed in cropland and orchard when moisture content exceeded 10.8 and 13.7%, respectively, whereas no clear suppression was observed under other land-uses. As a result, the C loss in grassland and shrubland was 49.1–78.9% higher than in cropland following significant precipitation events. In addition, SR was negatively and weakly correlated with soil temperature, indicating the change in the dominant control on SR due to extreme drought. Land-use change alters the response of soil respiration to soil moisture during extreme-drying-and-rewetting periods in this revegetated ecosystem. Its effect on respiration pulses will amplify as extreme climate events increase in the future, which may potentially alter the existing C balance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.