Abstract

A molecular-scale understanding of the transition between hydration states in clay minerals remains a challenging problem because of the very fast stepwise swelling process observed from X-ray diffraction (XRD) experiments. XRD profile modeling assumes the coexistence of multiple hydration states in a clay sample to fit the experimental XRD pattern obtained under humid conditions. While XRD profile modeling provides a macroscopic understanding of the heterogeneous hydration structure of clay minerals, a microscopic model of the transition between hydration states is still missing. Here, for the first time, we use molecular dynamics simulation to investigate the transition states between a dry interlayer, one-layer hydrate, and two-layer hydrate. We find that the hydrogen bonds that form across the interlayer at the clay particle edge make an important contribution to the energy barrier to interlayer hydration, especially for initial hydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.