Abstract

Dirac factorization of the elastic wave equation of two-dimension stiff plates coupled to a rigid substrate reveals the possible topological properties of elastic waves in this system. These waves may possess spin-like degrees of freedom associated with a gapped band structure reminiscent of the spin Hall effect. In semi-infinite plates or strips with zero displacement edges, the Dirac-factored elastic wave equation shows the possibility of edge modes moving in opposite directions. The finite size of strips leads to overlap between edge modes consequently opening a gap in their spectrum eliminating the spin Hall-like effects. This Dirac factorization tells us what solutions of the elastic wave equation would be if we could break some symmetry. Dirac factorization does not break symmetry but simply exposes what topological properties of elastic waves may result from symmetry breaking structural or external perturbations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.