Abstract

The diversity and functional role of fungi, one of the ecologically most important groups of eukaryotic microorganisms, remains largely unknown in deep biosphere environments. In this study we investigated fungal communities in packer-isolated bedrock fractures in Olkiluoto, Finland at depths ranging from 296 to 798 m below surface level. DNA- and cDNA-based high-throughput amplicon sequencing analysis of the fungal internal transcribed spacer (ITS) gene markers was used to examine the total fungal diversity and to identify the active members in deep fracture zones at different depths. Results showed that fungi were present in fracture zones at all depths and fungal diversity was higher than expected. Most of the observed fungal sequences belonged to the phylum Ascomycota. Phyla Basidiomycota and Chytridiomycota were only represented as a minor part of the fungal community. Dominating fungal classes in the deep bedrock aquifers were Sordariomycetes, Eurotiomycetes, and Dothideomycetes from the Ascomycota phylum and classes Microbotryomycetes and Tremellomycetes from the Basidiomycota phylum, which are the most frequently detected fungal taxa reported also from deep sea environments. In addition some fungal sequences represented potentially novel fungal species. Active fungi were detected in most of the fracture zones, which proves that fungi are able to maintain cellular activity in these oligotrophic conditions. Possible roles of fungi and their origin in deep bedrock groundwater can only be speculated in the light of current knowledge but some species may be specifically adapted to deep subsurface environment and may play important roles in the utilization and recycling of nutrients and thus sustaining the deep subsurface microbial community.

Highlights

  • Fungi are mainly decomposers that play a major role in the biodegradation of plant materials in terrestrial ecosystems

  • When comparing the Chao1 Operational Taxonomic Units (OTUs) richness estimate values to true detected OTU numbers, 22–100% of estimated fungal OTUs were obtained from the subsampled sequence data meaning that sequencing depth was sufficient enough to fully characterize the fungal communities in most of the samples

  • Terrestrial deep subsurface mycology is still an unexplored research field as the major research done until now has been focusing on the diversity and functional studies of bacteria and archaea

Read more

Summary

Introduction

Fungi are mainly decomposers that play a major role in the biodegradation of plant materials in terrestrial ecosystems. Fungal diversity, and their role in ecosystem functioning remains largely unknown. According to the small number of studies conducted far viable fungi have been detected in different sub-seafloor and subterranean environments, such as groundwater aquifers, continental sedimentary and hard rocks, and deep. Based on a recent review by Nagano and Nagahama (2012) deep sea extreme environments harbor diverse fungal communities. These fungi represent mainly Ascomycota phyla with Eurotiomycetes, Dothideomycetes, Sordariomycetes, and Saccharomycetes being the most abundant fungal classes and fungi belonging to Basidiomycota and Chytridiomycota have been detected with culture-independed methods. The first viable fungi isolated from deep continental hard rock environments originated from deep crystalline bedrock aquifers in Äspö, Sweden (Pedersen, 1987) and later several yeast species were detected with DNA-based methods (Pedersen et al, 1996)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call