Abstract

By systematically investigating the relaxation behavior of a model metallic glass based on the extensive molecular dynamics (MD) simulations combined with the dynamic mechanical spectroscopy method, a pronounced ultra-low temperature peak on the loss modulus spectrum was discovered for the first time in MD simulations. It was found that the relaxation peak occurs at a much lower temperature than the typical temperature for the conventional β relation peak as reported in the literature. According to the atomic displacement analysis, we unravel that the reversible atomic motions, rather than the thermal vibrations or local structural rearrangements, mainly contribute to this relaxation peak. We further identify the atomic level mechanism of this fast relaxation process by characterizing the local geometrical anisotropy. Furthermore, by tracing the dynamic behaviors of these “reversible” atoms, we demonstrate the intrinsic hierarchy of the relaxation modes, which are triggered by atomic vibrations and gradually developed to include the reversible and irreversible atomic movements. Our findings provide an important piece of the puzzle about the holistic picture of the rich relaxation processes in metallic glasses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.