Abstract

The distinct characteristics of active species produced during the photocatalytic reaction can result in alterations in the degradation routes of organic pollutants with diverse chemical structures. The relationship between the active species and degradation pathways of organic pollutants lacks a direct experimental or characterization method, so in-depth research is still needed to understand the details of their interactions. In this study, sulfur-doped bulk carbon nitride (SBCN) was prepared based on bulk carbon nitride (BCN), and the process of S-doping enhancing the production of O21 was revealed. Through the degradation experiment, the degradation rate of CIP by SBCN reached 91 %, which was higher than that of BCN (66 %). The increase of degradation rate was mainly attributed to the increase of O21. Through the density functional theory (DFT) calculation of CIP and its degradation intermediate, due to the preferential oxidation of CIP by O21, O21 changes the initial degradation direction of CIP, releasing more attack sites for ˙O2−, thereby achieving more efficient degradation of CIP through the synergy of O21 and ˙O2−. In this study, the attack preferences of the active species and their synergistic promotion provide important insights for the efficient photocatalytic degradation of organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.