Abstract

We analyze an autonomous thermoelectric engine composed of two superconducting qubits coupled to separate heat baths and connected by a Josephson junction. Work and heat are process quantities and not observables of the engine quantum system, but their rates can be derived from the steady-state expectation value of appropriate system observables, and their fluctuations are given by correlation functions determined by the master equation and quantum regression theorem of open quantum systems. Underneath the constant steady state of the system, the temporal correlation functions reveal a cyclical, dynamical transfer of energy---the strokes of the engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.