Abstract

The lipases/acyltransferases homologous to CpLIP2 of Candida parapsilosis efficiently catalyze acyltransfer reactions in lipid/water media with high water activity (aW >0.9). Two new enzymes of this family, CduLAc from Candida dubliniensis and CalLAc8 from Candida albicans, were characterized. Despite 82 % sequence identity, the two enzymes have significant differences in their catalytic behaviors. In order to understand the roles played by the different subdomains of these proteins (main core, cap and C-terminal flap), chimeric enzymes were designed by rational exchange of cap and C-terminal flap, between CduLAc and CalLAc8. The results show that the cap region plays a significant role in substrate specificity; the main core was found to be the most important part of the protein for acyltransfer ability. Similar exchanges were made with CAL-A from Candida antarctica, but only the C-terminal exchange was successful. Yet, the role of this domain was not clearly elucidated, other than that it is essential for activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call