Abstract

AbstractThe synthesis of heterometallic transition metal complexes featuring bridging cyaphide ions (C≡P−) is reported. These are synthesized from reactions of Au(IDipp)(CP) (IDipp=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) with electron‐rich, nucleophilic transition metal reagents, affording Au(IDipp)(μ2−C≡P)Ni(MeIiPr)2 (MeIiPr=1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) and Au(IDipp)(μ2−C≡P)Rh(Cp*)(PMe3). These studies reveal that, in contrast to the cyanide ion, bimetallic cyaphido complexes strongly favor a η1 : η2 coordination mode that maximizes the interaction of the second metal (Ni, Rh) with the π‐manifold of the ion (and not the phosphorus atom lone pair). End‐on bridging can be effectively unlocked by blocking the π‐manifold, as demonstrated by reaction of Au(IDipp)(μ2−C≡P)Rh(Cp*)(PMe3) with an electrophilic transition metal reagent, W(CO)5(THF), which affords the heterotrimetallic compound Au(IDipp)(μ3−C≡P)[Rh(Cp*)(PMe3)][W(CO)5].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.