Abstract

The development of efficient water splitting heterogeneous catalysts in acidic media is largely hampered by both the slow kinetics of the oxygen evolution reaction (OER) and the limited stability of the electrocatalyst under these harsh working conditions. At the origin of both the activity and the instability of iridium oxides used as OER catalysts in acid conditions is the formation of high-valence IrOx intermediates such as IrO3. Nevertheless, owing to its reactivity with water, this intermediate was never stabilized, and its electrochemical/chemical behavior was never studied in depth. Here, we report a strategy to stabilize this elusive IrO3 intermediate. Furthermore, we demonstrate that upon reactivity with water, gaseous oxygen is generated, while the intermediate is protonated following the reaction IrO3 + xH2O → H2xIrO3 + x/2O2. The resulting hydrated iridium oxide H2IrO3, which possesses three-dimensional proton intercalation/deintercalation channels, can be considered as an enlightening OER mod...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call