Abstract

Light emission from ultracompact electrically driven optical antennas (EDOAs) has garnered significant attention due to its terahertz modulation bandwidth. Typically, the EDOAs are fixed and nonadjustable once fabricated, thus hindering the attempts to investigate the influence of structural geometry on light emission properties. Here, we propose and demonstrate that the EDOAs can be constructed by carefully manipulating the gold-coated tips of atomic force microscopy operated in conductive mode into contact with the optical antennas covered by insulating film, where the position of the tunnel junction on the antenna surface can be controlled with high accuracy and flexibility. Taking gold nanorod antennas covered by HfO2 film as an example, we found that the highest light generation efficiency is obtained when the tunnel junction is located at the shoulder edge of the nanorod antenna, where the bonding dipolar surface plasmon mode in the junction is spectrally and spatially coupled with the longitudinal radiation mode of the EDOAs. Besides, position variation of the tunnel junction on the nanorod surface also strongly influences the far-field radiation angular distribution and emission spectrum. Numerical simulations are in good agreement with the experimental results. Our findings offer fundamental insights into the influence of structural parameters on the light emission performance of EDOAs, thus leading to better design of EDOAs with high light generation efficiency and powerful functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.