Abstract

This study introduces a novel approach to the critical task of submarine pipeline or cable (POC) detection by employing GoogleNet for the automatic recognition of side-scan sonar (SSS) images. The traditional interpretation methods, heavily reliant on human interpretation, are replaced with a more reliable deep-learning-based methodology. We explored the enhancement of model accuracy via transfer learning and scrutinized the influence of three distinct pre-training datasets on the model’s performance. The results indicate that GoogleNet facilitated effective identification, with accuracy and precision rates exceeding 90%. Furthermore, pre-training with the ImageNet dataset increased prediction accuracy by about 10% compared to the model without pre-training. The model’s prediction ability was best promoted by pre-training datasets in the following order: Marine-PULSE ≥ ImageNet > SeabedObjects-KLSG. Our study shows that pre-training dataset categories, dataset volume, and data consistency with predicted data are crucial factors affecting pre-training outcomes. These findings set the stage for future research on automatic pipeline detection using deep learning techniques and emphasize the significance of suitable pre-training dataset selection for CNN models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.