Abstract

AbstractThe optoelectronic properties, morphology, and consequently the performance of metal halide perovskite solar cells are directly related to the crystalline phases and intermediates formed during film preparation. The gas quenching method is compatible with large‐area deposition, but an understanding of how this method influences these properties and performance is scarce in the literature. Here, in situ grazing incidence wide angle X‐ray scattering is employed during spin coating deposition to gain insights on the formation of MAPbI3 and CsxFA1−xPb(I0.83Br0.17)3 perovskites, comparing the use of dimethyl sulfoxide (DMSO) and 2‐methyl‐n‐pyrrolidone (NMP) as coordinative solvents. Intermediates formed using DMSO depend on the perovskite composition (e.g., Cs content), while for NMP the same intermediate [PbI2(NMP)] is formed independently on the composition. For MAPbI3 and CsxFA1−xPb(I0.83Br0.17)3 with a small amount of Cs (10% and 20%), the best efficiencies are achieved using NMP, while the use of DMSO is preferred for higher (30% and 40%) amount of Cs. The inhibition of the 2H/4H hexagonal phase when using NMP is crucial for the final performance. These findings provide a deep understanding about the formation mechanism in multication perovskites and assist the community to choose the best solvent for the desired perovskite composition aiming to perovskite‐on‐silicon tandem solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.