Abstract

The emergence of layered sodium transition metal oxides featuring a multiphase structure presents a promising approach for cathode materials in sodium-ion batteries, showcasing notably improved energy storage capacity. However, the advancement of cathodes with multiphase structures faces obstacles due to the limited understanding of the integrated structural effects. Herein, the integrated structural effects by an in-depth structure-chemistry analysis in the developed layered cathode system NaxCu0.1Co0.1Ni0.25Mn0.4Ti0.15O2 with purposely designed P2/O3 phase integration, are comprehended. The results affirm that integrated phase ratio plays a pivotal role in electrochemical/structural stability, particularly at high voltage and with the incorporation of anionic redox. In contrast to previous reports advocating solely for the enhanced electrochemical performance in biphasic structures, it is demonstrated that an inappropriate composite structure is more destructive than a single-phase design. The in situ X-ray diffraction results, coupled with density functional theory computations further confirm that the biphasic structure with P2:O3 = 4:6 shows suppressed irreversible phase transition at high desodiated states and thus exhibits optimized electrochemical performance. These fundamental discoveries provide clues to the design of high-performance layered oxide cathodes for next-generation SIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.